Topic 5I - Equilibrium Calculations

Progress of reaction

FIGURE 11.4 The variation of Gibbs free energy of a reaction mixture with composition. A reaction mixture has a spontaneous tendency to change in the direction of decreasing Gibbs free energy. Note that ΔG is the slope of the line at each composition, whereas ΔG° is the difference between the standard Gibbs free energies of the pure reactants and those of the pure products.

FIGURE 11.6 The relative sizes of the reaction quotient Q and the equilibrium constant K indicate the direction in which a reaction mixture tends to change. The arrows show that when Q < K, reactants form products (left), and when Q > K, products form reactants (right). There is no tendency to change once the reaction quotient has become equal to the equilibrium constant.

has the potential to go to completion (K > 1) is one in which the minimum of the free-energy curve (the position of equilibrium) lies close to pure products. (b) A reaction that has little tendency to form products (K < 1) is one in which the minimum of the free-energy curve lies close to pure reactants.

FIGURE 11.7 (a) A reaction that

CO (3) + H2O (9) = CO2 (9) + H2 (3)

Figure 10.3 Water-gas shift equilibrium. K_p as a function of temperature.

Example of Equilibrium Table Use

For the reaction:

$$2 NO_2(g) = N_2O_4(g)$$

for which

$$K_p = \frac{P_{N_2O_4}}{P_{NO_2}^2} = 6.96 \text{ atm}^{-1}$$
 (at 298K)

For $P_{initial}$ (NO₂) = 3 atm,

	NO ₂ (atm)	N ₂ O ₄ (atm)
Initial	3	0
Change	-x	+0.5 x
Equilibrium	3 - x	0.5 x

$$K_p = \frac{0.5 \text{ x}}{(3 - \text{x})^2} = 6.96 \text{ atm}^{-1}$$

$$6.96 x^2 - 42.26 x + 62.64 = 0$$

Solving for x, using the quadratic formula, gives

$$x = 3.50, 2.57$$

Because the x = 3.50 root is physically impossible, we choose x = 2.57.

Thus,

$$P^{eq}$$
 (NO₂) = 3 - 2.57 = 0.43 atm

$$P^{eq} (N_2O_4) = 0.5 \times 2.57 = 1.285 atm$$

Figure 12.3

Dependence of G and ΔG on the extent of reaction variable x, starting on the left from standard conditions, and holding the temperature constant at 298 K. Where ΔG passes through zero, G passes through its minimum value; G thus acts as a chemical potential that determines the position of equilibrium and prevents the system from departing from it. The ΔG curve becomes singular (approaching $+\infty$) as $x \longrightarrow 0.5$.